Adaptive Agents Simulation of Freshwater Ecosystems

F. Recknagel

Department of Seil and Water, Adeluide University, Glen Osmond 5064, Australia
{Friedrich Recknagel@adelaide edis )

Abstract: A concept for adaptive agents simulation of food web dynamics and algal species interactions is
designed for freshwater lakes. Agents for food web entities will be based on evolving differential equations
adopted from process based lake models such as SALMO. Altemative agents for zlgal spacies will be extracted
from a lake database by means of artificial neural networks and evolutionary algorithms. The database contains
multivariate time-series of 9 lakes different in eutrophication, climate and morphology. The suggested concept
will not be constrained by rigidity as typical for traditional lake models but evolves ecosystem structures and
behaviours by emerging, submerging, interacting and evolving ecological entities simulated by adaptive agents,
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1. INTRODUCTION

Ecologists are consistently searching for new
modelling paradigms 1in  order to simulate
realistically the distinct nature of ecosystems by
computer models. The ecosystem concept as
established by Forbes [1887] had the most forming
influence on ecosystem modelling in the past
century. It no longer bears close examination as
ecosystems like lakes are known to evolve and
being driven by exogenous forces rather than
existing permanently and in isolation. However, the
ecogystern  approach has resulted in valuable
databases as well as quantitative and qualitative
descriptions of ecosystem dynamics and has made
ecology a predictive science [Rigler and Peters,
1995]. Computer models resulting from the
ecosysiem concept were Tainly based on
differential  equations (DE)} for well-defined
ecological entities and processes, adjusted by
measured or estimated parameters. Radtke and
Straskraba [1980] firstly tried to overcome the
rigidity of such models by parameter optimization
of ecological geal functions rtelevant to lake
ecosystems as introduced by Straskraba [1979]. The
authors considered their results as contribution to a
structural self-optimising ecosystem model but
admitted that more adequate models and more
suitable optimisation procedures would be needed
to make it a success. In order o overcome model
rigidity, Kaluzny and Swartzman [1985] suggested
a hibrary of alternative representations of ecological
processes from where a simulation model picks the
most relevant for a specific ecological situation. The

authors concluded that their approach was Hmited by
validation data and ‘the difficulty of tracing model
response to  single processes’ [Kaluzny and
Swartzman, 1983]. Jorgensen and Mejer [1979]
introduced the thermodynamic entity exergy for
holistic ecosystem modelling that has lead to the
concept of structural dynamic models [Jorgensen
1986]. It inplies to equip an ecosystemn model with a
global rather than local goal function, namely exergy,
to be satisfied by optimising process parameters in the
course of simulation. Even though this approach
avoids the problem of biasing by ‘local’ optima as
faced by Radtke and Straskraba [1980] it may require
more adequate models and more suitable optimisation
procedures as well.

Machine learning techniques such as artificial neural
networks (ANN) [Rumelhart et al,, 1986] and genetic
algorithms {GA) [Helland 1992] altow looking at the
same problem from a different angle, They are
inductive techniques and are capable of extracting
empirical patterns as teflected by multivariate time
series data. Even though the range and extent of data
available may limit ANN, GA can explore both
causal and empirical information by means of hybrid
frameworks to induce and evolive models [Bobbin and
Recknagel 2001 ; Whigham and Recknagel 20014, bl
However predictive capacity of resulting models still
relies on underlying causal and empirical knowledge.

The application of adaptive agents (AA) [Holland,
1992; Holland, 1998] is an attempt to go one step
further: to evolve ecosystem structures and
behaviours by emerging, submerging, interacting and
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evelving ecological entities simulated by adaptive
agents.

The present paper designs a concept of how AA can
best be applied in  order to  simulate
species/population abundance and succession of
algae and zooplankion in freshwater lakes. AA
represent state variables of ecological entities by
DE, ANN, GA and hybrids of GA and DE. Whilst
DE are adopted from verified deterministic lake
models such as SATMO [Recknagel and Benndorf,
19821, ANN, GA as well as hybrids will be
extracted from a lake dats base [e.g. Recknagel et
al., 1997; Recknagel, 1997; Bobbin and Recknagel,
2001; Whigham and Recknage!, 2001, b]. The
database currently contains multivariate time-series
of 9 lakes different in ewrophication, climate and
morphology. The range of conditions in the
database will result in alternative agents for the
same species/population resting in an agent bank.
During simulations only those agents will be fired at
a certain time that best suit the current conditions
otherwise will remain in the agent bank, awaiting
conditions to change. Fired (emerging) agents
simultanecusly evolve based on GA in order to
reach their optima.

The proposed concept is currently implemented and
tested towards adaptive lake ecosystem simulations.

2. ADAPTIVE AGENTS FRAMEWORK

Hoilland {19921 introduced Echo as a generic
simulator designed io explore interactions among
large numbers of different agents. It provides for the
study of populations of evolving, reproducing
agents distributed over a geography with different
inputs of renewable resources at various sites. Each
agent has simple capabilities — offence, defense,
trading, mate selection — determined by a set of
“chromosomes”. Chromosormes in cach agent are
differentiated into fwo classes:

(1) Tag chromosomes determine the agent’s
external  phenotypic  characteristics  and
distiguish: offence tag, defence tag and mating
tag. Tags are displayed on the exterior of an
agent and are analogous to signature groups of
an antigen or the logo of an organisation,

(2) Condition chromosomes determine what kinds
of intersctions iake place when agents
encounter one another and distinguish: combat
condition, trading condition or mating
condition.

The fact that an agent’s siructure is completely
defined by its chromosomes, which are just strings
over the resource alphabet {a,b,c,d}, plays a critical
role in its reproduction: An agent reproduces when
it “collects” encugh letters to make copies of its
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chromosomes. An agent can collect these letters
through its interactions: combat, trade, or uptake from
the envircnment. Each agent has a reservoir in which
it stores collected letters until there are enough of
them for reproduction to take pilace. Interactions
between agents, when they come into contact are
determined by a simple sequence of tests based on
their tags and conditions. In the simplest model they
first test for combat. then they test for trading and
finally they test for mating as follows:

(1) Combat: Each agent checks its combat condition

against the offence tag of the other agent, E.g., if
the combat condition is given by the string aad,
then this condition is matched by any offense tag
that begins with the letters aad. If the combat
condition of either agent matches the offense tag
of the other, then combat is initiated. Combat can
be inittated unilaterally by either agent. If combat
is initiated the offence tag of the first agent is
matched against the defense tag of the second
and a score is calcuiated.

Trading: If combat does not take place, then the
first agent in the pair checks its trading condition
against the offence g of the second agent, and
vice versa. Unlike combat, which can be initiated
unilaterally, trading is bilateral — a trade does not
take place unless the trading conditions of both
agenis are satisfied. The trading condition in the
simplest model has a single letter, as a suffix, that
specifies the resource being offered for trade. If
the trade is executed then each agent transfers
any excess of the offered resource (amounts over
and above the requirements for its own
reproduction) from its reservoir to the reservoir
of its trading partner. Though this is a very
simple rule, with no bidding between agents, it
does lead to intricate, rational trading interactions
as the system evolves. Trades that provide
resources needed for reproduction increase the
reproduction rate, assuring that agents with such
rational trading conditions become common
components of the population.

Mating: While an agent can reproduce asexuaily,
simply making copy of each of its chromosomes
when it has accumulated enough resources
(letters), there 1is also a provision for
recombination of chromosomes. When agents
come into contact and do not engage in combat,
the mating condition of each agent is checked
against the mating tag of the other. As with trade,
mating 15 only exscuted as a bilateral action.
Both agents must have their mating conditions
satisfied for recombination to take place. If this
happens, then the agenis exchange some of their
chromosome material, as with crossover under
the genetic algorithm.

AA characterised by these simply defined capabilities
provide for a rich set of variations iHlustrating the key
kernel properties of complex adaptive systems. They



were originally developed and applied for the study
of complex adaptive eccnomic systems {Holland
and Miller, 19917 such as stock markets [Wan and
Hunter, 1997} and businesses [Lin and Pai, 20001
However modified versions of Echo have
meanwhile been used to simulate spatial dynamics
of species or populations represented by individuals
strictly based on causal knowledge [Booth 1997;
Schmitz and Booth 1997; Kreft et al,, 1998]. These
examples are based on the assumption that local
emergence or submergence of individuals is driven
by  interrelationships  between  well-defined
individuals and their environment. Such an
individual-based approach seems to be relevant to
terrestrial ecosystems like forests [Schmitz and
Booth, 1997] where spatia} spreading of individual
tree species as an ouicome of competitive success is
of major interest. AA simulation of aguatic
ecosystems requires a different approach as
normally neither individual nor spatial aspects are
relevant, nor adequate data are available.

CONCEPT FOR ADAPTIVE AGENTS
SIMULATION OF FRESEWATER LAKES

3

A lake ecosystem has a definite boundary with
primary producers dominated by microscopic algal
cells (1 to 200 pm) with generation times of hours
to days, and secondary producers dominated by
mesoscopic zooplankion (20 to 2000 pm) with
generation times of days and weeks [Rigler and
Peters 1995]. Dissolved inorganic nutrients are
homogeneousty . distributed within the ecuphotic
surface layer where algal cells strongly interact and
grow as & result of competiton for nuirients and
light, The wind continuousiy stirs the surface layer
contributing to an almost homogenecus horizontal
distribution of algal cells. Zooplankton may also be
affected by wind but are mobile to a certain extent.
They tend to form horizontal patches in Tesponse to
food availability and predation pressure by fish.

If we focus modelling on the euphotic zone as the
scene of primary and secondary production in lakes,
we can imply that lake commumities are almost
homogenous distributed and almost instantaneousty
respond to exogenous disturbances.

As the prediction and explanation of instantaneous
population abundance and succession appears to be
the biggest challenge to freshwater ecolognsts, the
focus of AA simulation for iakes shifis from
individuais to populations (respective functional
groeps of populations) and from spatial to temporal
distributions. Therefore AA simulation of lake
ecosystems currently appears to be relevant at two
levels: aquatic food web interactions and aguatic
species mteractions.
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3.1. Food YWeb Interactions

Adaptive agents simulation of freshwater ecosystem
dynamics will be designed and implemented
according to Figure 1. Seven agents will bhe
considered mittally 10 represent the following major
entities of pelagic food-webs in freshwater lazkes:
blue-green  algae, green  algae and  diatoms,
herbivorous and Camivorcus zooplankton.
planktivorous and piscivorous fish (see Figure 1a).

These seven agents interact by predation and
competition, and are determined by envirommenial
driving forces such as solar radiation, water
temperature, nuirient loadings. Each single agent is
determined by evolving DE in order to maximise
(adapt) their performance (abundance)} in relation to
current environmental conditions (nuirient loadings,
light, temperature and abundance of competitors,
predators or preys). Evolving DE utilise evelutionary
algorithms in order to steadily optimise parameier
values and functions ef balance equations as used by
Recknagel and Benndorf [1982]. As a result, each
agent adapts simultaneously to current environmental
conditions by producing “offspring’” agents based on
its evaluation and selection of mates, recombination
strategy and mutation strategy {(see Figure 1b).
Successful case studies on evolving DE have heen
conducted by Whigham and Recknagel {2001a, b}
and Recknagel et al. {20001

-

3.2. Algal Species Interactions

Adaptive agents simufation of algal species dynamics
will be designed and implemented according to
Figure 2. Four agents will be considered initialiy fo
represent the following blue-green algae species
typically competing m eutrophic freshwaters in
SUMMET: Microcystis, Oscillatoria, Anabaena 3nd
Phormidium- (see Figure 2a). Thess four agenis
interact by competition and are determined by
environmenial driving forces such as solar radiation,
water temperature, nutrient loadings. Each single
agent is determined by evolving neural networks or
evolving rule sets in order to maximise (adapt) their
performance  {abundance) in relation to current
environmenta! conditions (nutrient loadings, light,
temperature and abundance of competitors}. Evolving
artificial neura! networks [Yao. and Liu, 1997] utilise
evolutionary algorithms in order to sweadily evolve
best adapted neural network models. Successful case
studies on evolving rule sets have been conducted by
Bobbin and Recknagel {20017 and Recknagel et al.
[2000]. They utilised evolutionary algorithms in order
to steadily evolve rule-based models. As a result, each
agent adapts simultaneously to current environmental
conditions by producing the best adapted modzi or
agent “offspring” based on its evaluation and
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Figure 1. Adaptive agents simulation of aquatic food web dynamics.

mates, recombination strategy and mutation strategy
{see Figure 2b).

Natural ecosystemns are characterised by redundancy
in their composition and structure. They gain a
certain degree of resilience to changing
environmental conditions depending on the extent
of redundancy. In order to develop adaptive agent
models that gain such resilience to environmental
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changes, they need to have redundancy in their
composition as well. Therefore a bank of ecological
agents (models) for additional algae species will be
developed occurring seasonally and locally in specific
fakes under certain environmental conditions.

MNeural network and evolutionary  algorithm
techniques will be used to develop these algae
specific agents from a database that currently contains
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Figure 2. Adaptive agents simulation of algal species
muitivariate time-series of ¢ lakes different in but otherwise will remain in the agent bank, awaiting

eutrophication, climate and morphology. The range
of conditions in the database will result in
alternative agents for the same species/population
resting in an agent bank.

During simulations only those agents will be fired at
a certain time that best suit the current conditions
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conditions to change. Fired (emerging) agents
simuttaneously evolve based on GA in order to reach
their optima. This agents bank will be the key to
enabie the adaptive agents model to change the
composition of agents during the simulation by
temporarily activating or resting agents (eg aigae
species) depending on favoring or inhibiting
environmental conditions,



4, CONCLUSIONS

{1) Adaptive agents provide a realistic framework
for ecosystem simulation evolving ecosystem
structures  and  behaviours by emerging,
submerging, interacting and  evolving
ecological entities,

(2) Applications of adaptive agents to lake
ecosystems appear te be relevant for dynamic
simufations of aguatic food web and aguatic
species interactions.

{3) Adaptive agents simulation of aquatic food web
interactions can be based on evolving
differential equations considering competition
and predation.

(4) Adaptive agents simulation of aguatic species
interactions can be based on arificial neural
networks and evolutionary algorithms extracted
from a diverse lake database. Simulations gain
resilience to environmental change from an
agent bank providing alternative agents for
same species.

(5) The presented concepis are currently being
developed by means of a multivariate time-
series database of nine freshwater lakes
different in climate, eutrophication and
morphology.
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